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Abstract

Authorship Attribution deals with the task of creating an appropriate characterization of texts

that captures the writing style of authors for accurate classification. With increased anonymity on

the internet, this task has become increasingly crucial in various fields of security and plagiarism

detection. Despite a few strands of work recently, Bengali lacks comprehensive research in this

field mainly due to the scarcity of resources. In order to extract stylometric features from text,

the smallest unit is character. In this report we start the exploration of authorship attribution with

character level models and contrast them against traditional word based models. We show that

the results with character based models are competitive with word based models but in terms of

memory and time consumption for training, the character level models far outperform the previous

models. The effect of pretraining character embedding was also analysed for the diverse Bengali

character set in authorship attribution. It was seen that the performance had improved by up to 10%

on pretraining showing that the character embeddings boremeaning information about the authorial

writing style. Later in the report we employ a transfer learning approach to perform classification for

authorship attribution in Bengali language. Language models are generally employed to estimate

the probability distribution of various linguistic units, making them one of the fundamental parts

of natural language processing. Applications of language models include a wide spectrum of tasks

such as text summarization, translation and classification. We propose an approach for authorship

attribution in Bengali based on AWD-LSTM architecture and transfer learning from language

models in three steps. Comparison of three variations of the proposed models are shown, with

the major difference being in tokenization - word, sub-word and character level tokenization. We

also compare some previous state-of-the-art models and show that the transfer learning approach

using sub-word tokenization pre-trained on News dataset performs better than other approaches.

Specifically an increase of 18% and 6% on accuracy for the final target datasets is observed.
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Chapter 1

Introduction

Authorship attribution is a type of complex classification task and is generally concerned with

detecting the author of a piece of writing by analyzing its stylometric and linguistic features within

a set of probable authors. This is different from authorship verification, which identifies if the

document belongs to a certain author and authorship characterization, which reveals characteristics

of an author from an unknown text. Anonymity is very common in recent times, especially due

to widespread use of internet the use and misuse of anonymity has become an important factor to

consider. The plethora of anonymous digital footprints makes authorship attribution indispensable

in various fields and its applications are growing constantly. Application of authorship attribution

covers many sectors such as forensic linguistics, plagiarism detection, computer security, criminal

law, cyber-crime, literature, trading etc.

Texts can have two properties: the topic and the style of writing. The task of detecting the author

depends mainly on capturing the elusive character of an author’s style from their texts. To perform

such task important features are extracted and classified using machine learning approaches[2].

Most stylometric studies use some items of language such as lexical and syntactic components.

Among them, character n-gram has been used widely and shown to provide insights into the

writing style of the authors[3]. Some research extracted semantic information using pre-trained

word embeddings[4]. With increasing computing power, various deep learning models have also

been successfully applied to the task, achieving impressive results[5, 6].

However, despite the current advancements in authorship attribution, sufficient work has not

been done in Bengali. Some traditional approaches have been implemented including feature
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extraction [7] and different types of word embedding[8]. Very recently deep learning models were

applied using character and word level tokenization[4]. Significant research work contributing

to the implications of transfer learning for Bengali literature is not done yet to our knowledge.

An elaborated study on the application of transfer learning for author detection in Bengali using

language modeling[9] is presented in this report. We performed unsupervised training of the

languagemodel followed by authorship attribution specific fine-tuning and classification. Effects of

various tokenization on this model are analyzed in terms of performance. The results demonstrate

a clear superiority of the transfer learning based approach against the other traditional models.

Concretely, the sub-word level model outperforms the other models in two target datasets. The

proposed language model based architecture outperforms former state-of-the-art models by a

significant margin of 6% to 12%. All models, along with the datasets created have been

released for public use.1

Dataset1(described in 3.3) is imbalanced, therefore resembles a real-world scenario more

closely where the text samples for each authors may not be found in equal amounts. To employ

transfer learning, language model is trained on two different datasets - Wikipedia and News corpus.

All Datasets are described in detail in section 3. Besides, experiments are performed with various

numbers of authors to show the model’s ability to perform on lesser information yet larger number

of authors to detect from.

In this report, our work is divided into three phases. The first phase consists of initial authorship

attribution experimentation with character level embedding pretraining. Phase 2 contains the

bulk of our work with transfer learning based approach. In this phase we use various types of

tokenizations and pretraining datasets and compare all approaches. In phase 3 we start using

transformer based architecture, specifically BERT for our specific task. A detailed outline of the

report can be found in the report structure section.

1https://github.com/tanny411/Authorship-Attribution-using-Transfer-Learning
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1.1 Motivation

The core motivations of our research on the topic of Authorship Attribution are as follows:

� Enrich Bengali research for authorship attribution task: Although Bengali language is

very prominent with the number of speakers around worldwide, the amount of substantial

research on the field of authorship attribution is scanty. We wanted to bridge this gap with a

new approach. Our hope is that this research will be a pioneer epitome for transfer learning

or deep learning approach on authorship attribution for Bengali literature. This research will

have its due impact into the advancement and further extension for this particular area of

research.

� Attribution to a Forensic Level: Previous works, to our inspection, was lacking a specific

focus in overall big picture of the task. Whenever a research was performed, there was some

level of inconsistency between the dataset and classification task. When overall accuracy was

good, the dataset seemed to be inconsistent. When the dataset was standard, performance

was not convincing enough. All in all, most of the models currently developed could not

be convincingly implemented into practical applications. We wanted to investigate deep

learning models with a view to take the authorship attribution in Bengali Literature to a

forensic level. For which, the research should be very efficient in handling the diversity error

of the authors.

� Introducing Deep Learning in the task: Works done so far mainly includes Support Vector

Machines, Naive Bayes Classifiers and multiple other probabilistic and non-probabilistic

models in Bengali Language for authorship attribution. This approaches is not very efficient

for some scenarios and handling the complexity which may arise due to the subtle nuances

of the problem domain. However, the touch of deep learning in this section range from very

little to nearly non-existent.

� A Benchmark in Diversity: Classifiers like the Support Vector Machine performed with

impressive accuracies of above 90% in classification of authors when the diversity of cate-

gories and topics was low. Whenever the number of authors was increased, the performance

of traditional models dropped drastically. Our approaches, described in the chapters ahead,
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try to tackle this problem of diversity head-on.
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1.2 Report Structure

The most important part of this report is the Phase 2 section. Almost all the substantial work

is explained from the very beginning to the end of that chapter. Phase 1 contributes to a small

part of this research as it introduces character-level embedding, a very new concept on Bengali

text-classification task yet unexplored. It tries to break a text to its most core part, character, from

which it tries to evaluate the sequence of those for finding the hidden patterns and meanings.

� The first section of the paper includes a strong background study on the fundamentals of

authorship attribution.

� The datasets are mentioned in full details with necessary statistics in data analysis portion

next. These include both pretraining text corpus and authorship attribution datasets.

� Phase 1, a supplementary part of this research, includes the concepts of character-level

embedding to which we compared the findings and performance of word-embedding.

� Phase 2, the main part of this research, includes the major portion of the research, where we

surpass our own highest performance in this task. Phase 2 is a complete portion in itself and

contributes almost to the entirety of the research.

� Phase 3, a newer path for the task at hand using transformer based transfer learning. We

show our initial findings and points out potentials paths to explore from here.

� We then describe about our actual research contribution and conclude with some future

scopes for research which we will try to work on the coming days.

-5-



Chapter 2

Related Works

2.1 On Author Attribution

The task of authorship attribution is an important research topic and has been prevalent for quite

a long time. Research in authorship attribution relies on detecting the styles of authors through

stylometry analysis assuming that the authors are subconsciously using homological idiolect in their

writings. To detect these patterns different kinds and sets of feature extraction were implemented.

The features were mainly classified as lexical, character, syntactic and semantic. Besides, most of

the past researchers dealt with small collections where each author may have been strongly inclined

towards particular topics. This made the authorship attribution task easier and bordering on topic

classification. Later work is focused on character n-grams as they are able to pick up author

nuances including lexical and syntactic information [3]. Combination of lexical and syntactic

features provides valuable information and it has shown improvement in performance [10]. Such

combinations can be helpful to boost the performance in cross-topic authorship attribution and

single-domain attribution [11].

Marching on with the advancement of deep learning, a large body of work is available on

authorship attribution and stylometry using various deep learning models. For example, multi-

headed recurrent neural network character language model were used that outperformed the other

methods in PAN 2015 [12]. Some works used syntactic recurrent neural network which learns

document representations from parts-of-speech tags and then attention mechanism to detect the

authorial writing style [5].
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Convolutional neural networks have also been employed for this task. Impressive performance

was achieved by using character-level and multi-channel CNN for large scale authorship attribution

[6]. Character n-grams help identify the authors of tweets and CNN architectures capture the

character-level interactions which can represent patterns in higher levels, thus detecting distinct

styles of authors [13]. Combination of pre-trained word vectors with one hot encoded POS

tags are also used [14]. Others investigate syntactic information in authorship task by building

separate language models for each author using part-of-speech tags besides word and character

level information [15].

Despite the amount of work being done in English and other languages for authorship attribu-

tion, not much has been accomplished in Bengali language, especially with transfer learning for

authorship attribution. Hand-drawn features such as POS tag count, word length, word frequency

etc were used with a 4 author dataset [7]. High accuracy was achieved using multiple features and

cosine similarity [16]. SVM was employed on a dataset of 6 authors [17]. Multilayer perceptrons

were also used [18]. The effects of word embeddings were analyzed on authorship attribution [8].

They showed that the fastText skip-gram with a CNN model beats other models on a 6 author

dataset. The distinct nature of Bengali text and its high vocabulary count serve to make training

using traditional methods complicated. The application of transfer learning and its effects on

authorship attribution are yet to be analyzed.

2.2 On Embedding

Embeddings are defined as mappings of tokens to a high dimensional space. These vectors

contains information about the semantic, syntactic, andmorphological aspects of the token. Tokens

can be anything from character, word to pieces of word or entire sentence. The tokens are usually

input to any machine learning system as these embeddings. The system thus finds patterns and

performs various tasks on the given text.
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2.2.1 Word Embedding

Word embeddings are often learned in an unsupervised manner such as Continuous Bag-

of-Words(CBOW), Skip-Gram models and co-occurance method. These are implemented as

word2vec, fastext and Glove. CBOW learns embeddings through prediction of the current word

based on its context(surrounding words). Skip-gram learn by prediction of the context given a

word. Glove on the other hand contructs co-occurance matrix of words and learn the embeddings.

Embeddings are used widely and their use has achieved numerous breakthroughs in NLP. Word

embeddings and convolutional models were used together to improve over other methods [19], in

sentiment analysis [20] and pretrained embeddings are also used in different tasks [21, 22]. Vari-

ous researches have broken down words into subword and character levels. [23] creates subword

embedding from counts of character n-grams.

2.2.2 Character Embedding

Character level embeddings are used as is, or to create embeddings in higher orders such as

for words, subwords etc. They have been used in POS tagging [24], dependency parsing [25], and

language modelling [24]. They are also used in machine translation by word [26] or by character

[27]. Pure character level classification was first demonstrated using CNN model [28] and it was

shown that such models can significantly surpass state of the art performances [29].

2.3 On Transfer Learning

Transfer learning is the process of reusing a model trained on an initial task as a starting

point for a different task. Deep learning approaches have been using this method to boost model

performance and save an enormous amount of time on various tasks of computer vision and natural

language processing. Transfer learning has been prevalent in computer vision for a long time and

pre-trained models on very large datasets are readily available. With this respect, natural language

processing mostly uses word embeddings as a source of transfer learning which aims at only the

first layer of the model. Some approaches combine multiple derived embeddings at different layers

[30]. Nevertheless, the need for training from scratch remains. The idea of using transfer learning
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from language models has been approached [31] but not widely adopted due to its need for large-

scale datasets. To address these issues a method called ULMFiT was proposed that successfully

enables robust transfer learning in any NLP task [9]. Since then, many NLP tasks have been able

to outperform SOTA on respective datasets using successful transfer learning in this approach.

2.4 On Training Neural Networks

In recent research, training neural networks efficiently has become a cumulative task of proper

architecture selection, suitable techniques application and fine-tuning. This section briefs the

techniques used in this paper.

1cycle policy: Learning rate is one of the most important hyper-parameter that drastically

effects experiments and has been manually tuned for quite some time. An impressive approach was

published in this regard [32]. In this method, a single trial is run over the dataset starting with a low

learning rate and is increased exponentially batch wise. The loss for each value is recorded. The

point of decreasing loss and yet high learning rate are selected as the optimal values. Examples of

learning rate can be observed from Figure 2.1.
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Figure 2.1: Cyclical learning rate for various stages of training.

Discriminative learning rate: Most-often, the chosen learning rate is fixed throughout the

training process and among all the layers. The various layers in a deep learning model contain

different levels of information and sometimes it may be necessary to allow for some information

to be preserved or changed slowly compared to the others. A technique known as discriminative

learning rate [9] solves the problem. This method ensures that the later layers of a neural network

train faster than the base layers. Building deep learning models on top of the embedding layers

has shown promising results in the recent past, which implies the later layers of the model need to
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be somewhat modified. Using discriminative learning rates, therefore, serves this purpose. Figure

2.2 provides an illustration of the discriminative learning rates.

Figure 2.2: Application of Discriminative Learning Rates [1]

Gradual unfreezing: In the case of transfer learning, when a task specific model is trained

on top of a pre-trained model, weights of all the layers are altered together. This method carries

noise back to the base layers from the newly attached(randomly initialized) layers. To prevent such

abrupt alteration and therefore catastrophic forgetting, we employ gradual unfreezing [9]. This

method first freezes the initial layers and trains only the last layers, then the pre-trained layers are

unfrozen one by one and trained further to tune to the problem-specific domain. Thus, the learned

information of the pre-trained model is used efficiently.

Slanted triangular learning rates: The original concept of stochastic gradient descent [33]

tries to employ the idea that the neural networks should be getting closer to the global minimum

value of the loss. As the global minimum for loss gets closer, the learning rate should decrease

quite obviously. If it doesn’t, the system may fall in an infinite loop as it jumps from one side of

the global minima to another because it keeps subtracting the multiple of the large learning rate

selected. Slanted triangular learning rate (STLR) linearly increases the learning rate to quickly

converge and then linearly decays it according to an update schedule in-order to tune the parameters

[9].

Stochastic Gradient Descent with restarts: It is highly likely the training phase of the neural

network will encounter local minima in the loss curve rather than the global minimum. In such

cases, the model may get stuck at the local minima instead of reaching for the global minima. A

technique that approaches this problem involves sudden increase in learning rates in hopes that it

will ’jump’ over the local minima if there are any. The process is called stochastic gradient descent

-10-



with restarts and was introduced in [33]. SGDR suddenly increases the learning rate, and then

decreases it again by cosine annealing. Figure 2.3 describes how learning rates are restarted after

every epoch to avoid the problem.

Figure 2.3: Resetting Learning Rate after each Epoch [1]
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Chapter 3

Data Analysis

The scarcity of standard benchmark datasets in Bengali language makes the task of authorship

attribution quite difficult. To overcome this issuewe build a dataset and use it alongside a previously

published dataset in this field. In total 4 datasets were used in different steps of the experiments.

3.1 News Corpus

This corpus is made of various Bengali newspaper articles. It includes articles on 12 categories.

This corpus is much bigger in size compared to the previous works in Bengali. There are 28.5+

million word tokens in this whole corpus and the number of unique words is 836509 forming

around 3% of the total vocabulary. Table 3.1 shows the details of the dataset along with some basic

statistical measures.

3.2 Wikipedia Corpus

We collected a subset of Bengali Wikipedia text for the purpose of our experiments. To create

the Wikipedia dataset, we have collected the Bengali wiki-dump1. The files are then merged and

each article is selected as a sample text. All HTML tags are removed and the title of the page is

stripped from the beginning of the text. This dataset contains 70377 samples with a total number

of words being 18+ million. The entire dataset has 1289249 unique words, which is 7% of the total

1collected on 10th June, 2019
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Table 3.1: News dataset statistics

Category Samples Word count Unique word
opinion 8098 4185472 243968

international 5155 1089780 86852
economics 3449 909648 58932

art 2665 1312571 154869
science 2906 697899 76755
politics 20050 6167418 196541
crime 8655 2016342 128308

education 12212 3963695 225348
sports 11903 3087029 174677
accident 6328 1086791 77171

environment 4313 1347509 103783
entertainment 10121 2669492 204902

Average 7988 2377803 144342
Total 95855 28533646 836509

vocabulary. This makes the Wikipedia dataset more varied in terms of the types of words being

used, compared to the News dataset.

3.3 Author Attribution Dataset(Dataset1)

This dataset has been collected from an online Bengali library and contains literary works

of different Bengali famous writers [4]. It contains novels, stories, series and other works of

16 authors. Each sample document is created with 750 words. In Table 3.2 details are shown

about the dataset. This dataset is imbalanced as apparent from Figure 3.1. We create multiple

balanced subsets of this dataset for various number of authors in-order to measure model stability

with increasing author numbers. The datasets are truncated to the minimum number of samples

available per author.
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Figure 3.1: Dataset1 Statistics

Table 3.2: Authorship attribution Dataset1 statistics

Author Samples Word count Unique word

candidate 01 185 138750 20568

candidate 02 223 167250 33124

candidate 03 469 351750 44477

candidate 04 476 357000 43864

candidate 05 562 421500 62485

candidate 06 775 581250 84311

candidate 07 849 636750 67579

candidate 08 888 666000 84888

candidate 09 931 698250 76071

candidate 10 1048 786000 69182

candidate 11 1100 825000 53163

candidate 12 1259 944250 89956

candidate 13 1312 984000 78717

candidate 14 1408 1056000 69648

candidate 15 1963 1472250 109230

candidate 16 4518 3388500 161893

Total 17966 13474500 590660

Average 1122.875 842156.25 71822.25
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3.4 Author Attribution Dataset(Dataset2)

It is a 6 Author dataset collected and analysed by Hemayath et al [8]. The total number of words

and unique words of this dataset are 2304338 and 230075 respectively. The data are obtained from

different online posts and blogs. This dataset is balanced among the 6 Authors with 350 sample

texts per author. Total word count and number of unique words per author are shown in Table 3.3.

Table 3.3: Authorship attribution Dataset2 statistics

Author Samples Word count Unique word
fe 350 357453 53613
ij 350 391033 72034
mk 350 377100 47669
rn 350 231396 50029
hm 350 555710 72624
rg 350 391646 58071

Total 2100 2304338 230075
Average 350 384056.33 59006.67
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Chapter 4

Phase 1: Character-Level Classification

with CNN

4.1 Overview

Traditionally texts are represented using independent features such as lexical n-gram or fre-

quency based representation. Generally, these approaches are incompetent for taking the similarity

or context of the words into account as these features aremostly independent and do not compensate

for the diversity. So, the semantic values of the words might be lost, which is problematic. One

plausible solution to this problem is to use word embedding, also generally known as distributed

term representations. It encodes semantic similarity from their co-occurrences. Chowdhury[8]

experimented with the effectiveness of word embedding in authorship attribution for Bangla lan-

guage experimenting with various architectures.

So, in the rudimentary phase of our research we decided to experiment with character embed-

dings as this type of work was not introduced for Bangla. Character CNN was first introduced by

zhang [28] for text classification task. From the empirical experiment of Sebastian[6] and Joze-

fowicz[29] character level NLP seems to be very promising for many practical uses. Although, one

may think that characters itself of a language does not bear any meaning, but some research papers

[34] illustrates that character level models can capture the semantic properties of the overall text.

Character level models also gives better performance for out-of-vocabulary words, misspelling etc
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and provide an open vocabulary. When working with word embeddings, usually the dimension

are much higher compared to character embedding. So, this gives a huge boost in removing the

bottlenecks in training tasks and also gives a huge advantages on computational as well as space

complexity.

This chapter describes full experimental setup and the findings of our experiment with character

embeddings implemented for authorship attribution in Bengali language. A comparison with word

embeddings in performance is also stated. To better the performance of the proposed model, the

idea of pre-training was also explored. Outcomes of all the experiments are summarized in result

and discussion section.

4.2 Proposed Architecture

Character-level CNN can be used instead of words for classifications[28]. CNN can work even

without the syntactic and semantic structure of the language. Which makes these models language

independent because character set are fixed for a language. In this experiment we use CNN with

different architectures to get the best performance successfully extracting character level features of

the text. We worked with 3 different dataset to preserve the diversity effect. This architecture were

later used for preparing the pre-trained character embeddings for classification. To describe the

architecture in simple terms, it is a deep neural network starting with 4 convolutional layers, each

followed with a maxpool layer of kernel size 3. In the convolutional layers the number of filters

increase while decreasing the kernel size at each layer as standardized in computer vision. The

kernel sizes are 7,3,1 and 1 respectively. The number of filters are 64,128,256 and 256. First part

is an embedding layer where each character is represented as a vector of length ‖+ ‖ equal to the

alphabet size. The convolutional layers are stacked with a fully connected layer of 512 activation

nodes, activation function ReLU and dropout. Finally the output layer uses softmax to calculate

the classification probabilities. Adam optimizer is used along with categorical cross-entropy as the

loss function.
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4.3 Character Embedding

In character embedding the main goal is to turn characters into meaningful numerical repre-

sentation as opposed to words usually in form of a vector. these vector can represent the correlation

between different characters and it can be further extended to the correlation among group of

characters even in much bigger context such as words, sentences, documents etc. Such abstraction

can be a solution to fit misspelled words, rare or new words, slang or emoticons. Variation within

different words and parts of speech can also be handled with grouping of characters. Limitations

that came with vocabulary handling is now taken care of. There is no bottleneck for out of vocabu-

lary words as characters are the smallest unit for wording. They can make up any word. Whereas,

in word embedding we had this problem. When a word appeared which is not presented in the vo-

cabulary set it was simply ignored or given weak representation. Another significant improvement

is the vocabulary size. Instead of having a very large vocabulary of words, character embeddings

have a fixed number of characters which is significantly smaller and thus greatly reduces model

complexity and the number of parameters. Furthermore, characters can be fit into a very small

vector whereas for words it could go up to 300 or more. The simplest way to represent a character

is to use one-hot encoding. We use one-hot encoding as a baseline for comparison of pre-trained

embeddings with the size of the alphabet. It can be initialized randomly also and the size be treated

as a hyper-parameter for further tuning.

4.4 Training the model

The alphabet size during this experiment was 253. The embedding vector size for characters

was equal to alphabet size. The 253 different characters are consisted of english letters(capital and

small) and digits, Bangla letters and digits, Bangla vowel symbols, and various other punctuation

and symbols. Two sets of embeddings were created for the character set for comparative training.

First one being hot encoding and the other is pre-trained embeddings. Training was done in two

phases as stated below:
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4.4.1 Pre-training Embedding

To make pre-trained character embeddings the architecture mentioned above was used on news

dataset. This is in contrast to usual ways of learning embeddings. No separate model was used

like[35] to learn the embeddings. Instead, already available classification task on a marginally

large dataset learns character embeddings for its own purposes. Those embeddings can be used as

initialization for the author attribution task, which has a smaller dataset compared to the former,

thus giving it an initial boost. The model was trained with a learning rate of 0.001 and decay of

0.0001. Maximum length of each text sample was set as 1000 and batch size as 80. A dropout rate

of 0.5 was used in the fully connected layer to prevent over-fitting. They are then extracted and

used for the task of author attribution in our case.

4.4.2 Performing Classification

Final classification for authorship attribution was performed in two separate process. One with

one-hot encoding and the other is with pre-trained embedding. A dropout probability of 0.7 was

set in the fully connected layer and trained with batch size 128. Maximum length of each text was

set to be 3000 characters. The experiment was done on two author attribution datasets separately.

The first dataset had 6 authors[8] and the other one was our own curated dataset with maximum

14 authors.

4.5 Experiments

We showed the impact of pre-trained character level embedding in terms of accuracy juxtapos-

ing to without pre-trainingmodel. Comparison between word embedding and character embedding

is also an important aspect of out experiment. All models are compared for increasing number of

authors(classes) on the corpus mentioned to asses the quality of the models. To equate the dataset

number of samples per class is truncated to the minimum among the whole subset. We propose a

model for word level classification mostly similar to our Char-CNN model. The model used for

performance analysis is as follows:
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4.5.1 Word Embedding Model

This model has close resemblance to the proposed CharCNNmodel except for a few differences

to tune with the word level version of classification. The model has 2 convolutional layers with the

kernel sizes 7,3 and number of filters are 128,256 respectively for each layer.Each layer followed

by a maxpool layer. The model is initialized with pretrained word embeddings from word2vec and

fastext, both CBOW and skipgram versions. The convolutional layers are stacked with an LSTM

layer of 100 neurons and a fully connected layer of 512 activation nodes both with dropout to

prevent overfitting. Finally softmax layer is used to provide the classification probabilities. It is

trained for 10 epochs with a learning rate of 0.001 with Adam optimizer, batch size is 32 and 750

words per sample are used as input to models.All the word level models have a vocabulary size of

60000 and word embedding vector of size 300.

4.6 Results and Discussion

The summarized result of characterCNN with word embeddings are shown in the table 4.1 .

These accuracy are obtained with pre-trained embeddings. Because the datasets were balanced,

the comparison of accuracies is sufficient.

Table 4.1: Performance comparision of different models with pretrained embedding

#Authors 6[8] 6 8 10 12 14
#samples/author 350 1100 931 849 562 469

Char-CNN 83 96 92 86 75 69
W2V(CBOW) 65.3 97 82.8 83.3 76.4 71.8
fastText(CBOW) 65 73 58 35.7 37.31 40.3

W2V(Skip) 79 94 91.1 85.4 82.2 78.6
fastText(Skip) 86 98 95.2 86.35 80.9 81.2

When pre-training character embedding was used models were initialized with already learned

weight vectors instead of random values or only one-hot encoding. This gives the model a initial

direction and boost for achieving better result. Table 4.2 shows the impact of pre-trained character

embedding on the proposed model.

From the indications of table 4.1 we can see that Skip-gram implemented by fastText performs

better for the given dataset. One reason behind that is fastText works at a sub-word level and
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Table 4.2: pretrained vs non-pretrained comparison

#of Authors 6[8] 6 8 10 12 14
#of samples/class 350 1100 931 849 562 469

Pretrained Embedding 83 96 92 86 75 69
Not pretrained 71 95 82 83 66 59.5

extracts better information and styles from the text than word level. However, Character level

also performs comparatively with the sub-word level model(fastText) when the dataset is big

enough. As the number of author increases so does the number of samples to per author because

of truncation. It becomes difficult for the character level model to gather necessary information

from this small dataset. Even then, it was the second best performing model in the list next to

fastText. So, with bigger dataset, character level model is capable of performing significantly

better as shown by zhang[28] in his research work. But there are other benefits to character level

models. For example, in terms of number of parameter, character level model is definitely much

superior to its word level counter parts. The embedding vectors for the word level models is of

size 4<14338=6E42C>A ∗ E>201D;0AHB8I4. i.e. 300 * 60000. On the other hand the character

embedding matrix is of size 253*253 given that we initially used one-hot vectors. This size can

also be reduced to as low as 253*16 as were done in some research[29]. Another aspect that

should taken into consideration is the amount of time the model consumes in training. In case

of word embedding models, to get the desired result an LSTM layer should be added to include

time series information in the model and a pure CNN does not perform satisfactorily. Although it

improves the accuracy for word embedding model but with the cost of taking more time to train.

On the other hand, the character level model works significantly well with only using convolutional

layers and the time complexity reduces up to even 8 times which is pretty amazing. As stated

by zhang[28] in his research, ConvNets with character embedding can completely replace words

and work even without any semantic meanings. Therefore, convolutional layers are able to extract

whatever information necessary for the purposes of author attribution given enough data.

As for the experiment on usefulness of pre-trained character embedding, from the table 4.2

we can see that using a pre-trained embedding gives better accuracy across datasets and different

number of authors regardless of the amount of training data available for each author. This
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Figure 4.1: Comparison of Word and Character embedding based models

Figure 4.2: Effects of pretraining character embeddings.
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shows that these naively learned embeddings contain valuable information that can be easily

applied to various tasks of the language including author attribution. It also increases performance

by significant margin. These numerical representations of character in the embeddings contain

information about morphology, syntax of the language among other things. So, this can be inferred

that such embeddings can be learned from any task and applied to other tasks as a form of transfer

learning, given that the set of alphabet remains same.
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Chapter 5

Phase 2: Universal Language Model

Fine Tuning for Authorship Attribution

5.1 Overview

The traditional approaches of authorship attribution in Bengali Language, even in cases of

deep learning methods just implement a classification model with word representations or other

extracted features, taking very little regard of the language on its own. In this phase of our research,

our approach was to make the model learn the language, and then perform the requires tasks, which

includes pre-training a model and then performing classification in 3 steps. The idea of using such

a setup is much like the traditional approach of using a single word-embedding layer, only here the

language model is a multi-layered deep neural network on its own, holding much more information

in its weights than a single layer of embedding matrix would [9]. The general idea of this research,

however, is to capture the essence of Bengali language first, then proceed to the more granular

task of classification with the help of language models. After the training phase, we test with

some examples and find that the models created in our experiments can actually complete entire

Bengali paragraphs with very little grammatical or semantic flaws. So, it is safe to assume that

the weights of the language models hold enough relevant information to understand the patterns at

which Bengali words appear one after another as opposed to single word-embedding layer which

only represents relationship among words.
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5.2 Proposed Architecture

5.2.1 Language Model

The patterns in the writings of authors recur and this nature of the task suggests the use of a

recurrent neural network(RNN). In this case, we employed a special variant of the RNN, called

the AWD-LSTM [36]. It stands for ASGD(Average Stochastic Gradient Descent) Weight-Dropped

LSTM. This model provides special regularization techniques such as drop-connect and other

optimizations that make it a suitable choice for generalizing context and language modeling. In

traditional models, overfitting is a major issue. Drop-connect handles this issue by randomly

selecting the activation subset on the hidden-to-hidden weight matrices. This preserves the RNNs

ability to remember long-term dependency yet not overfit. Figure 5.1 provides a graphical example

of the drop-connect network.

Figure 5.1: DropConnect Network

Among some other techniques is the generation of dropout mask on the first call namely the

variational dropout [37]. Divisibility problem of elements is reduced by variable length backprop-

agation. Embedding Dropout [37] and reduction of embedding size all helped the architecture

in achieving SOTA in language modelling [38] and therefore is the chosen for successful transfer

learning [9].

The encoder network consists of an Embedding layer with an embedding size of 400, followed

by 3 regular LSTM layers each with 1150 hidden nodes. It has a few short-cut connections and

numerous drop-out hyper-parameters but does not use attention mechanism. The decoder is formed

by a softmax linear layer, that provides the probabilistic estimations for the next word over the
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vocabulary. We used Adam optimizer [39] and flattened cross-entropy loss function. A simplified

diagram of the architecture is shown in Figure 5.2 with an example text.

�✁✂✄☎✆✝
✞✆✟✠✡
☛☞✌☞✍

✎✆✟✠✡ ✏
☛✑✑✒✓✍

✎✆✟✠✡ ✔
☛✑✑✒✓✍

✎✆✟✠✡ ✑
☛✑✑✒✓✍

✕☎✖✠✗✗✘✙✚
✞✆✟✠✡
☛✛✓✓✍

�'� : > �;*� ��3 

>�Ø:✜✢✣✤ ✥ ✦✧✢ ★✥✩

Figure 5.2: DropConnect Network

5.2.2 Classifier

The classifier is built on top of the language model by only changing the decoder part of the

model. Two linear layers are added with batch normalization and dropout [9]. Activation function

ReLU is used for intermediate layers and softmax for the output layer provided the necessary

probability distribution to predict among the given authors.

5.3 Tokenization

Traditionally tokenization in Bengali has been carried out at word level, separating words by

spaces. This includes separating punctuation or special characters as separate tokens. But Bengali

language has some distinct characteristics which make mere separation by words less meaningful.

Lemmatization and stemming provide a way for removing inflection, but this process remains

arduous and only basic rule based systems are available to perform this task in Bengali. Besides,

the removed parts of the words are not always completely meaningless and may provide some
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meaning in terms of gender, person, case, number or animacy. Information provided by declension

is also a necessary part of the language to consider. With this end, besides word-level basic

tokenization, we also perform sub-word and character level tokenization and compare the various

methods’ effect in the final result. All these methods are described elaborately in the following

subsections.

5.3.1 Word level

Word level tokenization has been performed mainly by considering words separated by spaces

as separate tokens. Besides, words that occur less than 3 times are discarded considering them as

rare words, names or misspellings. We select the most frequent 60,000 words as the vocabulary

to proceed to the network. Unknown words are replaced with the <unk> token. Some specialized

tokens are also added such as the beginning of a string <bos>, end of a string <eos>, padding

<pad>, character repetition and word repetition representing tokens, etc.

5.3.2 Sub-word level

Sub-word tokenization means dividing a word into parts and using each part as a token. There

is no specialized sub-word tokenizer for Bengali language, despite having a considerable amount

of inflection. To tackle this problem, sub-word tokenization was performed using SentencePiece

tokenizer [40]. SentencePiece is a language independent tokenizer that tokenizes raw sentences

in an unsupervised manner. Using SentencePiece, the unigram segmentation algorithm [41] was

employed to create the subword vocabulary. For training, we chose 30,000 most frequent tokens

[42]. Tokens appearing less than 3 times were discarded and replaced with <unk> token. Besides,

other tokens include <s> as start and </s> as the end of a sentence.

5.3.3 Character level

In character level tokenization, a sentence is split into characters and each character is consid-

ered a token. In this case, the total number of tokens is very low, 188 in our case by combining

Bengali, English alpha-numerals and special characters. The language model generates one char-

acter at a time, which are concatenated to form words, sentences, and even paragraphs. Besides

the vocabulary, we also use special tokens just as was used in word-level tokenization. The use
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of character level tokenization not only reduces the vocabulary size drastically but also removes

the bottleneck for out-of-vocabulary words, misspellings, etc. Characters can be used to build

correlation among groups of characters despite the inflection and declension that occur to add

additional meaning to the word. Related words can be kept as is, without discarding any part and

losing any information and still be recognized as being related.

5.4 Training

The main approach to perform transfer learning with the help of language models closely

follows ULMFiT [9]. The entire procedure is divided into three steps, as shown in Figure 5.3.

Each step has been explained in the following subsections.

Universal Language
Model

NEWS /
WIKIPEDIA
DATASET

Language Model
Fine-tuning

AUTHOR
ATTRIBUTION

DATASET

Classification

AUTHOR
ATTRIBBUTION

DATASET
AUTHOR

DETECTION

Unsupervised
method

Unsupervised
method

Supervised
method

Figure 5.3: Universal Language Model Fine Tuning Steps.

5.4.1 Universal Language model

Two reasonably large Bengali datasets have been used to perform this step of the training.

The aim for the model is to ‘learn’ Bengali language through language modeling. For this, we

have used Wikipedia dataset and News dataset that contain a variety of Bengali texts that can

generalize to most text that may appear in downstream tasks. For all the models batch size of 32,

back-propagation-through-time(bptt) of 70 and weight decay of 0.1 for all layers is used. We have

used a drop-out multiplier of 0.5 to the ratios selected in [9] for all the layers to avoid over-fitting.

An appropriate learning rate for each model is selected through cyclic learning rate finder [32].

This is depicted in the Figure 2.1. Sometimes learning rates are altered as training progressed,

as determined by the loss of the validation set. This is shown as comma separated learning rates
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in Table 5.1. Each epoch employed stochastic gradient descent with restarts (SGDR) mentioned

in Section 2. All models are trained until they started to show signs of over-fitting, which is 30

epochs for the word and sub-word levels, and 15 epochs for the character level models. Important

hyper-parameters are mentioned in Table 5.1 for all the models. After training, the models begin

to learn Bengali. When provided with one or more initial words, the models can complete entire

paragraphs quite meaningfully. Illustration of model predictions are shown in Figure 5.4 from the

Wikipedia dataset trained model for different levels of tokenization.

Table 5.1: Universal Language model hyper-parameters

Dataset Tokenization Epoch Batch size Learning rate

News
Word 30 32 1e-3
Sub-word 30 32 1e-2,1e-3
Character 15 32 1e-2,1e-6,1e-2

Wiki
Word 30 32 1e-2,1e-3
Sub-word 30 32 1e-3
Character 15 32 1e-2

Word	level:

িতন	মাস	দীঘ�	সময়	ধের	ধের	যাওয়া	এক	ধরেণর	ভয়ংকর	�খলা	।	এ�	এক�	song	�খলা
যােক	সাধারণত	সাধারণভােব	বলা	হয়	হাফ	-	অফ	�খলা	।	এই	�খলা	উৎসেবর	সময়	রােতর
�বলা	রােতর	�বলায়	িদেয়	�র�	হেব	।	তেব	িকছ� 	িকছ� 	�খলায়	�দখা	যায়	,	তেব	�বিশরভাগ
সময়ই	তা	হেত	পাের	।

Sub-word	level:

িতন	মাসব�াপী▁রা�য়▁স�ান▁পদক▁�দােনর▁ব�ব�া▁করা▁হয়।▁বত�মােন▁িচিকৎসা▁িব�ােন
▁সবেচেয়▁�বিশ▁অবদােনর▁জন�▁এ▁স�াননা▁�দান▁করা▁হে�।▁১▁�ম,▁২০১৭▁তািরেখ▁
সব��থম▁এই▁পুর�ার▁�দান▁করা▁হয়।▁xxbos▁ইরসাল-উল-হক▁(মৃত� �:▁১৬▁মাচ�▁
১৮৯৩)▁িছেলন▁একজন▁মুসিলম▁পি�ত,▁�লখক,▁দাশ�িনক▁ও▁রাজনীিতিবদ।

Character	level:

িতন	মাস	পের	আি�কা	মহােদেশর	িবে�র	অন�তম	�সরা	িতন�	িবষয়	�যখােন	আলবানীয়	স�াট	
�জর�জােলেমর	উ�র	অিভবাসী	ও	সা�াজ�বাদী	ত� �ক�র	নামানুসাের	পিরিচত	িছল	এবন	উে�খেযাগ�
�রামান	িবেরাধী	�লােকরা	এ�েক	�ভািবত	

Figure 5.4: Text generation from different language models.
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5.4.2 Language model Fine-tuning

After training the languagemodel on general text, it is fine-tuned to the task-specific type of text.

Each model from the previous section is then fine-tuned on two authorship attribution datasets as

mentioned in Section 3. In order to tune the model, the original language model is first loaded and

frozen except for the last layers that hold the most task specific information. Using cyclic learning

rate finder [32] learning rate for each model is determined. The model has been trained for 2

epochs, and then trained for 2 more epochs unfreezing another layer group, repeating it one more

time before unfreezing the entire model. The models are trained as long as loss kept decreasing

and training has been halted on signs of over-fitting. Learning rates are altered as required by

observing the loss of the validation data, depicted by comma separated values in Table 5.2. Rest

of the model settings are kept same as before. Batch size along with other hyper-parameters are

summarized in Table 5.2.

Table 5.2: Fine-Tuning Language model hyper-parameters

ULM Dataset Tokenization Dataset Epoch Batch size Learning rate

News

Word
1 19 32 1e-3

2 10 32 1e-2

Sub-word
1 22 32 1e-3,1e-4

2 10 32 2e-2

Character
1 14 32 1e-2

2 10 128 1e-3

Wikipedia

Word
1 26 32 1e-2,1e-3,1e-4

2 10 32 1e-2

Sub-word
1 24 32 1e-2,1e-3

2 10 32 2e-2

Character
1 20 32 1e-2

2 10 128 1e-1,1e-2,1e-3
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5.4.3 Classification

The final down-stream task is classification. The model is modified as mentioned in Section

5.2.2. The encoder weights from the fine-tuned language model are loaded into the classifier. The

decoder weights are randomly initialized. Dropout multiplier is set to 0.5 and chosen learning

rate is 1e-2 using cyclical learning rate finder. We have used momentum values 0.8 and 0.7 for

optimization [9]. On loading the languagemodel weights, themodel is frozenwith only the decoder

available for training. After training for 2 epochs, a layer group is unfrozen and trained using sliced

learning rates for 2 epochs. Slicing mainly distributes learning rates among the layers so that the

initial layers are updated slowly to maintain the pre-trained weights while the later layers, which

are the most task specific layers, are updated swiftly to learn the task at hand. A general rule of

slicing learning rate has been followed where the slice consists of initial learning rate(lr) and ;A

2.64

[9]. The unfreezing step is carried out one more time and trained for 2 epochs before unfreezing

the entire model and training for 6 epochs. Training has been stopped when it started to overfit.

We have used batch size of 32 for all the models at this stage.

5.5 Experiments

To compare the proposed models against baselines, previous state-of-the-art models were re-

created and results were drawn in terms of accuracy and F1-score. Neither of the previous models

use transfer learning from entire models. They are based on using pre-trained embeddings to boost

performance. The models used for comparison are discussed in brief below.

5.5.1 CNN-LSTMWord level classifier

The CNN-LSTM model [4] comprises of a mix of convolutional and LSTM layers suitable

for training the corpus on word-level tokenization. The architecture is made up of an embedding

layer that is initialized with pre-trained word-embeddings using skip-gram of fastText. Vocabulary

size of 60,000 and embedding vector size of 300 are used. Embedding layer is followed by 2

convolutional and maxpool layer pairs. The outputs from the convolutional layers are fed into an

LSTM layer of 100 neurons, whose outputs are in-turn fed into a fully connected layer of 512

neurons. Dropout is used in the fully connected layer to prevent the model from overfitting. A
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final softmax layer outputs probabilities for the classification. All parameters for the layers are

kept same as the originally proposed model. The model is trained for 15 epochs with a learning

rate of 0.001, decay of 1e-4 and batch size of 128 with 750 words per sample. We have used Adam

optimizer and categorical cross-entropy as the loss function.

5.5.2 CNN Character level classifier

This model aims to use character signals as embedding and passes them on to several convo-

lutional layers to extract information and later performs classification. The original CNN model

[4] has been recreated and trained for the entire dataset. The first layer consists of the embedding

layer whose weights are set as the pre-trained weights [4] obtained from training the News dataset

mentioned in Section 3. The vocabulary and embedding size is 181. The vocabulary is the same as

the one used with the character-level proposed model except for the special tokens. The embedding

layer is connected to 4 sequentially connected convolutional layers. Each convolutional layer is

followed with a maxpool layer of kernel size 3. A fully connected layer is stacked on top with the

number of nodes set as 512. The number of filters and kernel sizes for the convolutional layers is

kept same as the original model. The last layer is the output layer with softmax activation. With

a batch size of 128 and a maximum text sample length of 3000, the model has been trained on the

dataset for 15 epochs. A dropout rate of 0.5 is used in the fully connected layer as regularization.

Rest of the hyper-parameters are kept consistent with the CNN-LSTM model.

5.6 Results and Discussions

All the models were measured in terms of accuracy and F1-score. Although Dataset2 is

balanced, Dataset1 is not(refer to section 3), for which a look on the weighted F1-score is also

necessary. Accuracy measures the percentage of samples correctly identified, whereas the F1 score

is the harmonic sum of the precision and recall. Weighted F1-score thus gives us the ability to

look into samples correctly identified from each class in a comparable form. Table 5.3 shows the

summarization of the results obtained from various models against all the proposed models.

The effects of various other factors are analysed on the obtained results, such as model,

tokenization, number of author, sample distribution, and dataset used for pre-training. These are
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Table 5.3: Results of Classification

Dataset Model Tokenization ULM
Dataset

FiT
Perplexity Accuracy% F1 Score

Dataset1
ULMFiT

Word News 74.67 99.58 0.9855
Wiki 60.91 99.67 0.9967

Sub-word News 62.45 99.80 0.9980
Wiki 57.85 99.72 0.9972

Character News 3.42 98.55 0.9855
Wiki 3.36 98.58 0.9858

Char-CNN Character - - 86.28 0.7981
CNN-LSTM Word - - 93.82 0.8934

Dataset2
ULMFiT

Word News 203.11 94.67 0.9469
Wiki 149.58 94.33 0.9437

Sub-word News 233.04 95.33 0.9536
Wiki 260.90 94.67 0.9476

Character News 4.47 83.67 0.8360
Wiki 3.71 90.00 0.9007

Char-CNN Character - - 73.77 0.7147
CNN-LSTM Word - - 66.33 0.6320

discussed briefly below.

5.6.1 Model Effect

In order to assess the effects of ULMFiT model for the task of authorship attribution we train

some previous state-of-the-art models, namely Char-CNN andword level CNN-LSTM. FromTable

5.3 it is evident the ULMFiT model outperforms the other models with a significant amount on

both Dataset1 and Dataset2. This clearly shows that the transfer learning approach is effectively

applicable to the task of authorship attribution. The model learns Bengali from the language model

training and tunes to authorial writing styles on fine-tuning. Thus with the additional steps of

teaching the model a language, it is able to perform better in detecting the author of a text. Besides

this, the AWD-LSTM architecture along with the training techniques employed offers a strong base

for the language model as well as the classifier making the transfer learning thereof highly effective

[9].
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5.6.2 Tokenization Effect

Tokenization is an important part of any NLP task. In Bengali, the most common way so far

has been to tokenize by words. In this paper three types of tokenizations are attempted and their

effects are analyzed on the task of author classification. As described in Section 5.3, we have

performed word, sub-word and character level tokenization. In general, the character level models

perform worse than both word and sub-word models. This reflects that the character level model is

facing difficulty choosing the right author because of the long stream of tokens it has to go through

before reaching any conclusion. LSTM layers pass one character at a time, making any sentence a

long set of tokens. The LSTM layers therefore may have trouble gathering enough data about the

difference in text or style for each author.

The word and sub-word level models perform nearly equally well, but on further epochs,

the sub-word models begin to outrun the word-level models. These information can be drawn

from Figure 5.5 where we see the progress for each tokenization type model on both Dataset1

and Dataset2 on a zoomed-in scale. The comparison of word and sub-word level models can be

inferred from Figure 5.6 where we see the increasing accuracy of the sub-word level model on each

epoch. The sub-word tokenization breaks down the text into multiple parts but not completely.

As a result, linguistic information about the words are kept intact and it also provides information

about the relationship between structural components of words. Whereas, when words are simply

split, relation between words with slight variations of the structure is not as easily recognized.

5.6.3 Effect of number of Authors

In this section, the proposedmodelswith varying numbers of authors are compared to determine

the effectiveness of the models against increasing number of classes with fewer samples to train

on. Dataset1 contains 16 authors in an imbalanced manner. It is chunked into 5 different parts

containing 6, 8, 10, 12 and 14 authors respectively taking subsets randomly from the original

dataset. The samples per class in the derived datasets are truncated to the minimum number of

samples from among the classes. We have only compared the accuracy because all the models are

now being trained and tested on balanced dataset. Accuracy is measured on 20% held out dataset

for each case, after training on 80% of the data. Each of the 6 proposed models of 3 types(word,

sub-word and character level) are trained on these 5 sub-datasets. It can be inferred that as we
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Figure 5.5: Effect of tokenization on classification
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Figure 5.6: Effect of word and sub-word tokenization on classification

increase the number of authors, the sample per author also decreases, making it difficult for any

deep learning model to learn each class of text. The summary is presented in Table 5.4. A graph

depicting the accuracy trend with an increase in the number of authors for all the models is shown

in Figure 5.7.

Out of the 5 subsets that are created, the sub-word model pre-trained on the Wikipedia corpus

performs best in majority cases (3 in this occasion). More importantly, as the sample number

decreases, all other models more or less start performing worse than the Wikipedia sub-word

model. Figure 5.7 shows the decline in character model with lesser samples to train on. Moreover,

the word and sub-word level wiki models consistently perform better and the subword model tends

to give higher accuracy. From these results, we can conclude that the Wikipedia sub-word model

shows more stability than others. The reason behind this could be two-fold. Firstly the Wikipedia
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Table 5.4: Accuracy for various number of Authors

# of authors on the subset
Tokenization ULM Dataset 6 authors 8 authors 10 authors 12 authors 14 authors

Word News 99.69 99.53 99.58 99.41 98.63
Wiki 99.62 99.56 99.70 99.48 99.47

Sub-word News 99.47 99.40 98.71 99.56 99.39
Wiki 99.62 99.67 99.41 99.63 99.54

Character News 98.79 98.60 98.00 98.38 97.26
Wiki 98.79 98.66 98.18 97.78 97.11

dataset has more varied text than News dataset. This helps the model generalize better. Secondly,

the sub-word level model provides enough information about word and sentence structure yet not

breaking it down too much(into characters) to lose sight of the overall picture of the topic being

sampled.

5.6.4 Effect of pre-training datasets

Although Wikipedia trained models tend to show better down-stream generalization, the sce-

nario changes in real-world applications. Data is often imbalanced with some authors having very

few training samples compared to others. The loss for each epoch is plotted to compare the effects

of News and Wikipedia pre-trained models for each dataset(1 and 2) in Figure 5.8. For both the

datasets, the news-trained language model when used for transfer learning performs better in terms

of loss. The loss tends to reduce steadily with each epoch on both cases, but for news-model, the

loss gets much lower than the wiki-model. This shows that the categories and size of News dataset

enabled the classifier to distinguish better among the authors.

5.7 Pre-trained Language Models

A set of language models have been pre-trained on two different datasets, namely News and

Wikipedia as part of our workflow. Language models are measured in terms of perplexity. This

measure captures the degree of uncertainty in predicting the next word of the sentence. It is

calculated as the exponentiation of the obtained loss. Low perplexity is a sign of a well-trained

model. Table 5.5 lists the perplexities of the pre-trained models. We see that the character-level

models perform significantly better for the task of language modeling. An illustration of the
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Figure 5.7: Performance of different models with increasing number of authors

produced text can be seen in Figure 5.4. The next best performance is obtained by the sub-word

level model being slightly lower than the word-level models. The reason for this can be inferred

that the representation of the tokens in smaller forms(e.g. characters) may provide additional

information about the words and relation among the words than larger chunks can provide.

Table 5.5: Perplexity of Universal Language Models

Dataset Tokenization Perplexity

News
Word 47.52
Sub-word 43.61
Character 3.20

Wiki
Word 83.62
Sub-word 74.20
Character 3.08

-37-



0 1 2 3 4 5 6 7 8 9
Epoch

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Loss of classification for different pretrained models
news-ulm
wiki-ulm

(a) On Dataset1

0 1 2 3 4 5 6 7 8 9
Epoch

0.005

0.010

0.015

0.020

0.025

0.030

Lo
ss

Loss of classification for different pretrained models
news-ulm
wiki-ulm

(b) On Dataset2
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Chapter 6

Phase 3: Transformer Based Transfer

Learning for Authorship Attribution

6.1 Overview

Text classification is a classical natural language processing task. An important intermediate

step for this task includes text representation. Recent developments in this field has introduced and

developed on the concept of transfer learning, specifically various pre-trained models are being

trained on large corpuses and being released for public use. These models serve as a starting point

for various tasks instead of training randommodels from scratch. So far we have used and analysed

word embeddings, character embeddings and LSTM based language modeling objectives. Since

the beginning of 2019, a new type of architecture has come to light and has surpassed most previous

records on various NLP tasks. They are transformer architectures [43]. Among the various models

that use this architecture are BERT [44], XLNet [45], OpenAI GPT [46], RoBERTa [47] and

multilingual models such as mBERT, XLM [48] and XLM-R [49]. The common factor in all these

models is 1. They are all large models 2. They have been pretrained on vary large amount of

data and can even be trained more. Most models though trained on primarily single languages

such as English, German and Finnish some multilingual models are also available. mBERT for

example is trained on the wikipedias of over 100 languages, XLM on 15 and XLM-R on common

crawl corpus of over 100 languages. Due to heavy computational and large coupus requirement no

such model has been pretrained solely on Bengali yet. Nevertheless we leverage the multilingual
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model mBERT which contains a small fraction of Bengali text on its pretraining data. In this phase

of our research we use the transformer based multilingual model mBERT to perform Authorship

Attribution on Bengali texts. We also compare its performance with our previous approaches and

shed light into the potential improvements in our methodologies.

6.2 Architecture

BERT’s architecture is a multi-layer bidirectional Transformer encoder based on the original

Transformer [43]. The uniqueness of BERT is in that it uses bidirectional context instead of only

left-right context as in casual language modeling task. This new kind of language modeling is

called masked language modeling, similar to what is commonly known as ’cloze’ task. Besides

language modeling, BERT also employs next sentence prediction task when pretraining. The

architecture is formed of two parts: a transformer base, and task specific head. A brief discussion

of these parts is given below.

6.2.1 Input/Output Representation

A Transformer is usually made of two parts, and encoder and a decoder and is usulaly used for

seq2seq tasks. BERT on the other hand uses only the encoder part of the transformer model. BERT

can handle a variety of tasks including Question Answering, text classification etc. BERT uses

WordPiece embeddings [50] where a word maybe be broken into multiple pieces and each piece is

prefixed with the symbols ## to indicate their origins. The first token of all sequence is a special

token [CLS]. The final hidden state of this token is used as an aggregate sequence representation.

Besides this, each input sequence is a pair of sequences separated by the token [SEP]. BERT has

3 kinds of embeddings. Word embedding, positional embedding and sentence embedding. Word

embeddings map each word to a vector space, where word is a WordPiece token. Because this

model is masked language model, it cannot implicitly get information about the sequence in which

the words are. To tackle this positional embedding is used. Sentence embedding represents if a

sequence precedes another sequence in the next sentence prediction task of the model. The final

embedding of the model is therefore the sum of these three embeddings.
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6.2.2 Transformer Base and pretraining

The base architecture of BERT is exactly like the encoder of the original transformer model.

We use the smaller BERT model called the BERT base. It has L = 12 attention blocks, A = 12

self-attention heads and the hidden size is H = 768 [44]. Since it does not have the decoder part,

it also does not have any masked attention or encoder-decoder attention. Towards the end of the

model, all the attention heads are merged and a single output representation is presented. For the

purposes of classification we only concern ourselves with the output of the [CLS] token present at

the beginning of every sentence.

BERT is pretrained with two tasks. Masked Language Modeling and next sentence prediction

task. Masked languagemodel tries to predict the masked token. In the experiments, theymask 15%

of the tokens randomly and calculate the loss based on their predictions. To tackle the downstream

tasks that require understanding the relationship between sentences such as Question Answering

and Natural Language Inference, the task of next sentence prediction was introduced. This task

predicts if B is the sentence next to A or not in the sequence [�!(]�[(�%]�. The combination

of these two tasks make the model more robust towards downstream tasks.

6.2.3 Classification

For classification of the authors, we add a single layer classifier on top of the BERT transformer

encoder. Specifically the final hidden vector � ∈ IRH corresponding the input token [CLS] is input

to the classifier layer. And the number of outputs is the number of class labels, in our case the

number of authors in the dataset. Then the entire model is then fine tuned along with the new layer

end-to-end.

For our task of authorship attribution in Bengali we use the trained multilingual BERT model

called bert-base-multilingual-cased. We use a batch size of 6, total sequence length of 512 as

per the original setting. Most of the settings are set same as the original model as well. Unlike

original BERTwe use Slanted Triangular learning rates, Discriminative Learning rates and gradual

unfreezing similar to our previous approach. We select the learning rates at various stages using

learning rate finder. Thus we select an initial learning rate of 0.0004 for Dataset1 and train the

classifier for 40 epochs. For Dataset2 learning rate 0.0008 was selected and was trained for 35

epochs. The number of epochswere selected based on the validation set errors. When the validation
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set errors start to increase or oscillate, the training is stopped.

6.3 Results and Discussion

The models trained were measured in terms of their accuracy and then compared with our

previous approaches. Table 6.1 shows the comparison for both the datasets.

Table 6.1: Results of Classification

Dataset Model Accuracy%

Dataset1

mBERT 94.79
ULMFiT-subword-news 99.80
Char-CNN 86.28
CNN-LSTM 93.82

Dataset2

mBERT 93.33
ULMFiT-subword-news 95.33
Char-CNN 73.77
CNN-LSTM 66.33

mBERT was preatrained on over 100 languages wikipedia text, among which one of the

languages is Bengali. The wikidump of Bengali is not of a significant size as apparent from

experimentation’s in our previous ULMFiT based approach. Yet when finetuned on authorial texts

the mBERT models achieves accuracies near the previous best performances. This shows the

potential of the BERT architecture and its pretraining. Our previous approach on the other hand

used news text corpus which contained much more text data than the wikipedia dump. Since the

BERT model was not trained solely on Bengali we hypothesize a few further improvements that

may make BERT the state-of-the-art in authorship attribution in Bengali as well.

6.4 Further Works

Some of the future improvements that we assume will use BERTs full potential are:

• Finetuning the mBERT model on language modeling task on only Bengali text. For this

purposewe need a larger Bengali text corpus and lots of compute time. On further pretraining

we assume the model will be able to work with pure Bengali texts with much higher accuracy.
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• Creating a Bengali BERT model. This is a major undertaking and will require a very large

Bengali corpus and even larger amount of time. Although a lot of work, if accomplished,

this pretrained Bengali model will very beneficial to not only authorship attribution, but most

other NLP tasks in Bengali including classification, Reasoning and Question Answering.
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Chapter 7

Conclusion And Future Works

We start authorship attribution exploration through character-level model and show their com-

petitive performace but superior memory and time considerations. We also pretrain character

embeddings and perform comparative analysis with word based models.

These models require large amounts of data to perform better and so we move on to transfer

learning through language modeling objective. We use a multi-layer LSTM based network as

a language learner and use it for downstream tasks, such as authorship attribution. Overall, the

approach is comprised of three chronological phases with the first phase being the training of a

language model with generic text, the second phase being the fine-tuning of the same model on

unlabeled authorial texts and the final phase being a classifier trained to detect the authors. Finally,

for comparative analysis, we train various previously proposed models on two datasets containing

literary works in Bangla and see that this approach outperforms other traditional methods in both

the cases. More importantly however, this method seems to provide more stability with fewer data

and a larger pool of authors to detect from. Furthermore, various levels of tokenizations were

performed and the results were compared to discover that the Wikipedia based sub-word tokenized

model performs better consistently even with a small number of samples to learn from. The three

trained language models with different tokenizations along with the codes have been released.

Finally we start basic exploration of transformer based models for transfer learning and find

promising results. We propose some future paths to use BERTs full potential.

We have three papers published and 1 journal paper under review for publication. We would

kindly request to avoid direct plagiarism of any portion of this report. For any new idea inspired
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from this report citations will be appreciated.

7.1 Future Plan

We have just scratched the surface of the domain of transfer learning and a number of different

research opportunities have risen from this. The possible future path for this research includes:

� More Transformer based transfer learning

� Character-level language model and transfer learning thereof

� Cross-lingual authorship attribution
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Chapter 8

Publications

On various stages and components of our research we have published a few papers. They are

mentioned below:

• Authorship Attribution in Bangla literature using Character-level CNN. Published in

ICCIT, 2019.

• AContinuous SpaceNeural LanguageModel for Bengali Language. Published in ICCIT,

2019.

• A Subword Level Language Model for Bangla Language. Published in IJCCI, 2019.

• A Transfer Learning approach on Authorship Attribution in Bangla Literature. Under

review in Journal.
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